home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add










НАЙТИ ДЕНЬ НЕДЕЛИ ДЛЯ ЛЮБОЙ ЗАДАННОЙ ДАТЫ [11] 

Натолкнувшись на следующий способ вычисления в уме дня недели для любой заданной даты, шлю его Вам в надежде, что он заинтересует некоторых из Ваших читателей. Сам я считаю медленно; и поскольку, как я обнаружил, среднее время, затрачиваемое мной на решение всех таких задач, составляет двадцать секунд, то для тех, кто считает быстро, хватит, несомненно, и пятнадцати.

Берём заданную дату четырьмя частями, а именно: количество сотен, количество лет сверх, месяц, день.

Вычисляем следующие четыре величины, прибавляя каждую, по её нахождении, к общей сумме предыдущих величин. Если какая-то величина либо такой итог превышает 7, делим на 7 и сохраняем один лишь остаток.

Член «сотни». — Для старого стиля (который закончился 2 сентября 1752 года), вычитаем из 18. Для нового стиля (который начался 14 сентября [того же года] [12]) делим на 4, избыток отнимаем у 3, оставшееся умножаем на 2.

Член «годы». — Складываем вместе количество дюжин, избыток и количество четвёрок в избытке.

Член «месяц». — Если он начинается либо заканчивается на гласную, вычитаем число, обозначающее его номер в году, из 10. Результат плюс количество дней в нём дают член следующего месяца. Значение для января есть «0», для февраля или марта (третий месяц) будет «3», для декабря (двенадцатый месяц) будет «12».

Член «день» есть число месяца.

Полученный таким образом итог нужно подправить вычитанием «1» (но сперва добавив «7», если итог равен «0»), если дата приходится на январь или февраль високосного года; следует помнить, что всякий год, делящийся на 4, будет високосным, за исключением лишь тех сотенных лет для нового стиля, когда количество сотен не делится на 4 (например, 1800-й год).

Окончательный итог даёт день недели, причём «0» означает воскресенье, «1» — понедельник и так далее.


ПРИМЕРЫ

18 сентября 1783 года

17, делённое на 4, оставляет «1» сверх; 1 из 3 даёт «2»; дважды 2 будет «4».

83 есть 6 дюжин и 11, что даёт 17; плюс 2 будет 19, т. е. (после деления на 7) «5». В итоге 9, т. е. «2».

Член для августа есть «8 от 10», т. е. «2», а потому, для сентября, он есть «2 плюс 31», т. е. «5». В итоге 7, т. е. «0», который выходит.

18 даёт «4». Ответ: четверг.


 23 февраля 1676 года

16 из 18 даёт «2».

76 есть 6 дюжин и 4, что даёт 10; плюс 1 будет 11, т. е. «4». В итоге «6».

Член для февраля есть «3». В итоге 9, т. е. «2».

23 даёт 2. В итоге «4».

Поправка для високосного года даёт «3». Ответ: среда.


Льюис Кэрролл [13]



ДЕЛИМОСТЬ НА СЕМЬ [10] | Досуги математические и не только | ПРАВИЛО НАХОЖДЕНИЯ ДАТЫ ПАСХИ ДЛЯ ЛЮБОГО ГОДА ВПЛОТЬ ДО 2499